Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros

Base de dados
Tópicos
Ano de publicação
Tipo de documento
Intervalo de ano
1.
Vaccines (Basel) ; 10(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1705620

RESUMO

As of August 2021, there have been over 200 million confirmed case of coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus and more than 4 million COVID-19-related deaths globally. Although real-time polymerase chain reaction is considered to be the primary method of detection for SARS-CoV-2 infection, the use of serological assays for detecting COVID-19 antibodies has been shown to be effective in aiding with diagnosis, particularly in patients who have recovered from the disease and those in later stages of infection. Since it has a high detection rate and few limitations compared to conventional enzyme-linked immunosorbent assay protocols, we used a lateral flow immunoassay as our diagnostic tool of choice. Since lateral flow immunoassay results interpreted by the naked eye may lead to erroneous diagnoses, we developed an innovative, portable device with the capacity to capture a high-resolution reflectance spectrum as a means of promoting diagnostic accuracy. We combined this spectrum-based device with commercial lateral flow immunoassays to detect the neutralizing antibody in serum samples collected from 30 COVID-19-infected patients (26 mild cases and four severe cases). The results of our approach, lateral flow immunoassays coupled with a spectrum-based reader, demonstrated a 0.989 area under the ROC curve, 100% sensitivity, 95.7% positive predictive value, 87.5% specificity, and 100% negative predictive value. As a result, our approach exhibited great value for neutralizing antibody detection. In addition to the above tests, we also tested plasma samples from 16 AstraZeneca-vaccinated (ChAdOx1nCoV-19) patients and compared our approach and enzyme-linked immunosorbent assay results to see whether our approach could be applied to vaccinated patients. The results showed a high correlation between these two approaches, indicating that the lateral flow immunoassay coupled with a spectrum-based reader is a feasible approach for diagnosing the presence of a neutralizing antibody in both COVID-19-infected and vaccinated patients.

2.
Drug Deliv Transl Res ; 11(4): 1498-1508, 2021 08.
Artigo em Inglês | MEDLINE | ID: covidwho-1237565

RESUMO

Transdermal drug delivery systems (TDDS) have many advantages and represent an excellent alternative to oral delivery and hypodermic injections. TDDS are more convenient and less invasive tools for disease and viral infection treatment, prevention, detection, and surveillance. The emerging development of microneedles for TDDS has facilitated improved skin barrier penetration for the delivery of macromolecules or hydrophilic drugs. Microneedle TDDS patches can be fabricated to deliver virus vaccines and potentially provide a viable alternative vaccine modality that offers improved immunogenicity, thermostability, simplicity, safety, and compliance as well as sharp-waste reduction, increased cost-effectiveness, and the capacity for self-administration, which could improve vaccine distribution. These advantages make TDDS-based vaccine delivery an especially well-suited option for treatment of widespread viral infectious diseases including pandemics. Because microneedle-based bioassays employ transdermal extraction of interstitial fluid or blood, they can be used as a minimally invasive approach for surveying disease markers and providing point-of-care (POC) diagnostics. For cutaneous viral infections, TDDS can provide localized treatment with high specificity and less systemic toxicity. In summary, TDDS, especially those that employ microneedles, possess special attributes that can be leveraged to reduce morbidity and mortality from viral infectious diseases. In this regard, they may have considerable positive impact as a modality for improving global health. In this article, we introduce the possible role and summarize the current literature regarding TDDS applications for fighting common cutaneous or systemic viral infectious diseases, including herpes simplex, varicella or herpes zoster, warts, influenza, measles, and COVID-19.


Assuntos
Antivirais/administração & dosagem , Tratamento Farmacológico da COVID-19 , Sistemas de Liberação de Medicamentos/métodos , Microinjeções/métodos , Administração Cutânea , Animais , Antivirais/imunologia , Antivirais/metabolismo , COVID-19/imunologia , COVID-19/metabolismo , Doenças Transmissíveis/tratamento farmacológico , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/metabolismo , Sistemas de Liberação de Medicamentos/tendências , Humanos , Microinjeções/tendências
3.
Front Genet ; 12: 599261, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1167316

RESUMO

Analyzing host cells' transcriptional response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection will help delineate biological processes underlying viral pathogenesis. First, analysis of expression profiles of lung cell lines A549 and Calu3 revealed upregulation of antiviral interferon signaling genes in response to all three SARS-CoV-2, MERS-CoV, or influenza A virus (IAV) infections. However, perturbations in expression of genes involved in inflammatory, mitochondrial, and autophagy processes were specifically observed in SARS-CoV-2-infected cells. Next, a validation study in infected human nasopharyngeal samples also revealed perturbations in autophagy and mitochondrial processes. Specifically, mTOR expression, mitochondrial ribosomal, mitochondrial complex I, lysosome acidification, and mitochondrial fission promoting genes were concurrently downregulated in both infected cell lines and human samples. SARS-CoV-2 infection impeded autophagic flux either by upregulating GSK3B in lung cell lines or by downregulating autophagy genes, SNAP29, and lysosome acidification genes in human samples, contributing to increased viral replication. Therefore, drugs targeting lysosome acidification or autophagic flux could be tested as intervention strategies. Finally, age-stratified SARS-CoV-2-positive human data revealed impaired upregulation of chemokines, interferon-stimulated genes, and tripartite motif genes that are critical for antiviral signaling. Together, this analysis has revealed specific aspects of autophagic and mitochondrial function that are uniquely perturbed in SARS-CoV-2-infected host cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA